Unravelling an Extended Fermion Sector Through Higgs Physics

Ian Lewis Brookhaven National Laboratory

Phys.Rev. D87 (2013) 014007, S. Dawson, E. Furlan, IL arXiv:1406.3349, C-Y Chen, S. Dawson, IL

> June 30, 2014 LHC After the Higgs Santa Fe

Now what?

- Discovered a Higgs boson at ~ 125 GeV, remarkably SM like properties.
- Era of precision Higgs physics fast approaching.
- Can we use these measurements to gain insight into new physics?
- In particular, if new heavy colored fermions, may expect Higgs production to be sensitive to physics of extended sector.

Single Higgs Production

- Single Higgs production proceeds via triangle diagram:
 - Only sensitive flavor diagonal Higgs couplings.
 - Not enough information to probe structure of new sector.
- However, double Higgs production also includes a box diagram that may be sensitive to different couplings.

Double Higgs Production

- Double Higgs production proceeds through triangle and box diagrams.
- The box diagrams involve flavor off-diagonal couplings.
- Additionally, the s-channel diagram sensitive to Higgs trilinear coupling.
 - Directly probe structure of Higgs potential.
- Will focus on effects of heavy new colored fermions.
- However, flavor-off diagonal couplings not enough, to understand will analyze Low Energy Theorems (LET):
 - The limit in which the particles in the loops are much heavier than other energy scales of the process.

Low Energy Theorem in SM

- In the limit $p_H \to 0$ Higgs coupling looks like a vev insertion (assume particles $m_i \gg m_H$)
- If masses proportional to vev, as in SM, have low energy theorem:

$$\lim_{p_H \to 0} \mathcal{M}(X+H) = \sum_i \frac{g_i}{v^0} m_i^0 \frac{\partial}{\partial m_i^0} \mathcal{M}(X)$$

- *X* is some process with a Higgs.
- Apply many times find the effective operator: $O_2 = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \left(\frac{\Phi^{\dagger} \Phi}{v^2} \right)$
 - Φ is the Higgs doublet.
- What if particles have other sources of mass?
- Notice the for gg fusion, the above LET looks like derivatives of the β -function.

Calculating LET

- In limit $p_H \to 0$, looks like QCD beta function corrections.
- Considering only colored fermions:

$$\mathcal{L} = -\frac{1}{4g_{\rm eff}^2(\mu)}G_{\mu\nu}^aG^{a,\mu\nu} = -\frac{1}{4g_s^2(\mu)}\left(1 - \frac{g_s^2(\mu)}{24\pi}\log\det\frac{\mathcal{M}^\dagger(\Phi)\mathcal{M}(\Phi)}{\mu^2}\right)G_{\mu\nu}^aG^{a,\mu\nu}$$

- $\mathcal{M}(\Phi)$ is the Higgs dependent mass matrix.
- Effective Lagrangian:

$$\mathcal{L}_{eff} = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \det \frac{\mathcal{M}^{\dagger}(\Phi)\mathcal{M}(\Phi)}{\mu^2}$$

Mass Dependence of LETs

- Effective Lagrangian: $\mathcal{L}_{eff} = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \det \frac{\mathcal{M}^\dagger(\Phi) \mathcal{M}(\Phi)}{\mu^2}$
- Expand about $\Phi = (v + H)/\sqrt{2}$ to obtain effective Higgs interactions.
- In this formulation, can obtain LET with fermions in any mass basis.

Mass Dependence of LETs

- Effective Lagrangian: $\mathcal{L}_{eff} = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \det \frac{\mathcal{M}^{\dagger}(\Phi)\mathcal{M}(\Phi)}{\mu^2}$
- Expand about $\Phi = (v+H)/\sqrt{2}$ to obtain effective Higgs interactions.
- In this formulation, can obtain LET with fermions in any mass basis.
- If particles get their mass only from Standard Model Higgs: $\mathcal{M}(\Phi) = \mathcal{M}(0)\Phi$:

$$\mathcal{L}_{eff} = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \det \frac{\mathcal{M}^{\dagger}(\Phi)\mathcal{M}(\Phi)}{\mu^2}$$

$$\rightarrow \frac{\alpha_s N}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \left(\frac{\Phi^{\dagger}\Phi}{\nu^2}\right)$$

- \bullet N = number of heavy particles.
- LET insensitive to couplings and masses of the new sector.
- Results in substantial deviation in Higgs production rate.
- To obtain results consistent with current data, new states need additional mass sources.
- Study vector-like fermions, such that have $SU(2)_L$ invariant Dirac mass.

Effective Operators

Up to double Higgs production and for generic masses, \(\mu_{eff} \) generates two
operators Pierce, Thaler, Wang JHEP 0705 (2007) 070:

$$\begin{split} O_1 &= \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a,\mu\nu} \frac{\Phi^\dagger \Phi}{v^2} &\simeq \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a,\mu\nu} \left(\frac{H}{v} - \frac{H^2}{2v^2} \right) \\ O_2 &= \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \left(\frac{\Phi^\dagger \Phi}{v^2} \right) &\simeq \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a,\mu\nu} \left(\frac{H}{v} + \frac{H^2}{2v^2} \right) \end{split}$$

• Have effective Lagrangian:

$$\mathcal{L} = c_1 O_1 + c_2 O_2 \simeq \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a,\mu\nu} \left[(c_1 + c_2) \frac{H}{\nu} + (c_1 - c_2) \frac{H^2}{2\nu^2} \right]$$

 Measuring both single and double Higgs rates can give insight into masses and couplings of colored particles in loops.

Questions

- How well can we measure double Higgs rate?
- How well do the LETs work?
- What type of colored fermions and couplings give deviations from SM-like single and double Higgs productions?
 - Singlet top partner.
 - Mirror fermion pair.
 - Vector-like quark pair with SM mixing.
- Given nearly SM-like single Higgs production cross section, can we get a significant enhancement in double Higgs production?

Standard Model DiHiggs production

- Sensitive to Higgs trilinear coupling and possible new physics.
- Cross section of ~ 40.2 fb at 14 TeV at NNLO de Florian, Mazzitelli, PRL111 (2013) 201801
 - Top mass effects important for NLO K-factors Grigo, Hoff, Melnikov, Steinhauser, NPB875 (2013) 1
- Most likely most sensitive final state is $gg \to HH \to b\bar{b}\gamma\gamma$ Baur, Plehn, Rainwater, hep-ph/0310056
- In $b\bar{b}\gamma\gamma$ channel with 3 ab⁻¹ (with NLO rate) Snowmass Higgs Working Group; Yao, 1308.6302:

	14 TeV	33 TeV	100 TeV
S/\sqrt{B}	2.3	6.2	15.0
Trilinear uncertainty	50%	20%	8%

 Maybe combine channels to increase LHC measurement to 30% Goertz, Papaefstathiou, Yang, Zurita, 1301.3492

Standard Model

• Parameterize amplitude for $g^{a,\mu}(p_1)g^{b,\nu}(p_2) \to H(p_3)H(p_4)$ Glover, van der Bij, NPB309 (1988) 282:

$$A_{ab}^{\mu \text{N}} = \frac{\alpha_s}{8\pi v^2} \delta_{ab} \left[P_1^{\mu \text{N}}(p_1, p_2) F_1(s, t, u, m_t^2) + P_2^{\mu \text{N}}(p_1, p_2, p_3) F_2(s, t, u, m_t^2) \right]$$

- P_1 and P_2 are orthogonal spin-0 and spin-2 projectors.
- Partonic cross section:

$$\frac{d\hat{\sigma}(gg \to HH)}{dt} = \frac{\alpha_s^2}{2^{15}\pi^3 v^4} \frac{|F_1(s, t, u, m_t^2)|^2 + |F_2(s, t, u, m_t^2)|^2}{s^2}$$

- Can directly expand function in $1/m_t^2$ to see convergence of series.
- LET corresponds to LO piece.

Standard Model

Partonic cross section:

$$\frac{d\hat{\sigma}(gg \to HH)}{dt} = \frac{\alpha_s^2}{2^{15}\pi^3v^4} \frac{|F_1(s,t,u,m_t^2)|^2 + |F_2(s,t,u,m_t^2)|^2}{s^2}$$

• In low energy limit $c_H = 1$ $c_{HH} = -1$:

$$F_1(s,t,u,m_t^2)\mid_{LET} \to \left(-\frac{4}{3} + \frac{4m_H^2}{s - m_{TL}^2}\right)s$$
 $F_2(s,t,u,m_t^2)\mid_{LET} \to 0$

• At threshold $s = 4m_H$, $F_1 \rightarrow 0$.

Accuracy of Expansion

- LET appears to give good approximation to total cross section around 14 TeV.
- Distributions of M_{HH} are not convergent in the expansion.

Accuracy of Expansion

- ullet Approximate answer at \sim 14 TeV appears to be accident.
- Partonic cross section diverges.
- Hadronic cross section largely determined by where pdf suppressions cuts off partonic cross section.
- Never-the-less, will use LET to try to gain insight into physics of production cross sections.

Additional Heavy Quarks

- Will focus on additional heavy quarks running in loops.
- Current direct constraints depend on search strategy $T \to Ht$, $T \to Zt$, $T \to Wb$, etc.

Additional Heavy Quarks

- Will focus on additional heavy quarks running in loops.
- Current direct constraints depend on search strategy $T \to Ht$, $T \to Zt$, $T \to Wb$, etc.

Singlet Top Partner

- Want new particle whose mass arises from some place besides the Higgs.
- Only concentrate on mixing with 3rd generation SM quarks:

$$\psi_L = \begin{pmatrix} \mathcal{T}_L^1 \\ \mathcal{B}_L^1 \end{pmatrix}, \quad \mathcal{T}_R^1, \mathcal{B}_R^1$$

Add vector-like singlet top quark:

- T_L^2, T_R^2
- Mass eigenstates: $\chi_{L,R}^t \equiv \begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} \equiv U_{L,R}^t \begin{pmatrix} \mathcal{T}_{L,R}^1 \\ \mathcal{T}_{L,R}^2 \end{pmatrix} \quad b = \mathcal{B}^1$

Singlet Top Partner

- Want new particle whose mass arises from some place besides the Higgs.
- Only concentrate on mixing with 3^{rd} generation SM quarks:

$$\psi_L = \begin{pmatrix} \mathcal{T}_L^1 \\ \mathcal{B}_L^1 \end{pmatrix}, \quad \mathcal{T}_R^1, \mathcal{B}_R^1$$

- Add vector-like singlet top quark:
- Mass eigenstates: $\chi_{L,R}^t \equiv \begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} \equiv U_{L,R}^t \begin{pmatrix} \mathcal{T}_{L,R}^1 \\ \mathcal{T}_{L,R}^2 \end{pmatrix} \quad b = \mathcal{B}^1$
- Then have fermions mass terms:

$$-\mathcal{L}_{M,1} = \lambda_1 \overline{\psi}_L \Phi \mathcal{B}_R^1 + \lambda_2 \overline{\psi}_L \tilde{\Phi} \mathcal{T}_R^1 + \lambda_3 \overline{\psi}_L \tilde{\Phi} \mathcal{T}_R^2 + \lambda_4 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^1 + \lambda_5 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^2 + \text{h.c.}$$

- $\Phi = i\sigma^2\Phi^*$
- Note that by rotating T_R^2 and T_R^2 , can eliminate $\overline{T}_I^2 T_D^1$.
- Choose to be m_t, M_T, θ_I

Singlet Top Partner

- $\cos \theta_L = 0.987$ is smallest allowed by electroweak precision measurements Dawson, Furlan, 1205 4733
- At most decreases SM double Higgs rate by $\sim 15\%$.
- The LET is exactly the same in two cases.

- Why are the LETs exactly the same for the Standard Model and the Standard Model+Singlet Top Partner?
- Parameterize (using $\Phi = (v+H)/\sqrt{2}$):

$$\det \mathcal{M}(\Phi) = [1 + F_i(H/v)] \times P(\lambda_i, m_i, v)$$

• λ_i, m_i are fermion couplings and masses

$$\mathcal{L}_{eff} = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \det \frac{\mathcal{M}^{\dagger}(\Phi)\mathcal{M}(\Phi)}{\mu^2}$$

$$\rightarrow \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \left[1 + F_i(H/\nu)\right]$$

- Why are the LETs exactly the same for the Standard Model and the Standard Model+Singlet Top Partner?
- Parameterize (using $\Phi = (v+H)/\sqrt{2}$):

$$\det \mathcal{M}(\Phi) = [1 + F_i(H/v)] \times P(\lambda_i, m_i, v)$$

• λ_i, m_i are fermion couplings and masses

$$\mathcal{L}_{eff} = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \det \frac{\mathcal{M}^{\dagger}(\Phi)\mathcal{M}(\Phi)}{\mu^2}$$

$$\rightarrow \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \left[1 + F_i(H/\nu)\right]$$

• If $F_i(H/v)$ is independent of fermion masses and couplings, then Higgs rates are insensitive to new fermion properties. Gillioz, Grober, Grojean, Muhlleitner, Salvioni, 1206.7120

- Why are the LETs exactly the same for the Standard Model and the Standard Model+Singlet Top Partner?
- Parameterize (using $\Phi = (v+H)/\sqrt{2}$):

$$\det \mathcal{M}(\Phi) = [1 + F_i(H/v)] \times P(\lambda_i, m_i, v)$$

• λ_i, m_i are fermion couplings and masses

$$\mathcal{L}_{eff} = \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \det \frac{\mathcal{M}^{\dagger}(\Phi)\mathcal{M}(\Phi)}{\mu^2}$$

$$\rightarrow \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a,\mu\nu} \log \left[1 + F_i(H/\nu)\right]$$

- If F_i(H/v) is independent of fermion masses and couplings, then Higgs rates are insensitive to new fermion properties. Gillioz, Grober, Grojean, Muhlleitner, Salvioni, 1206.7120
- Reproduce SM Higgs rate when $1 + F_i(H/v) \propto 1 + H/v$.
 - Need $F_i^{(n)}(0) = 0$ for $n \ge 2$ AND
 - $F'_i(0) = 1 + F_i(0)$
- Break one of those conditions can get Higgs rates different from SM.

Fermions mass terms:

$$-\mathcal{L}_{M,1} = \lambda_1 \overline{\psi}_L \Phi \mathcal{B}_R^1 + \lambda_2 \overline{\psi}_L \tilde{\Phi} \mathcal{T}_R^1 + \lambda_3 \overline{\psi}_L \tilde{\Phi} \mathcal{T}_R^2 + \lambda_4 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^1 + \lambda_5 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^2 + \text{h.c.}$$

Higgs-dependent mass matrix:

$$\det M_{(1)}^{t}(H) = \det \begin{pmatrix} \lambda_{2} \frac{(H+\nu)}{\sqrt{2}} & \lambda_{3} \frac{(H+\nu)}{\sqrt{2}} \\ \lambda_{4} & \lambda_{5} \end{pmatrix}$$

$$= \left(1 + \frac{H}{\nu}\right) \det \begin{pmatrix} \lambda_{2} \frac{\nu}{\sqrt{2}} & \lambda_{3} \frac{\nu}{\sqrt{2}} \\ \lambda_{4} & \lambda_{5} \end{pmatrix}$$

$$= \left(1 + F_{i}(H/\nu)\right) \times P(\lambda_{i}, m_{i}, \nu).$$

- $F_i(H/v) = H/v$
- $F_i'(0) = 1 + F_i(0)$

Fermions mass terms:

$$-\mathcal{L}_{M,1} = \lambda_1 \overline{\psi}_L \Phi \mathcal{B}_R^1 + \lambda_2 \overline{\psi}_L \tilde{\Phi} \mathcal{T}_R^1 + \lambda_3 \overline{\psi}_L \tilde{\Phi} \mathcal{T}_R^2 + \lambda_4 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^1 + \lambda_5 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^2 + \text{h.c.}$$

• Higgs-dependent mass matrix:

$$\det M_{(1)}^{t}(H) = \det \begin{pmatrix} \lambda_{2} \frac{(H+v)}{\sqrt{2}} & \lambda_{3} \frac{(H+v)}{\sqrt{2}} \\ \lambda_{4} & \lambda_{5} \end{pmatrix}$$

$$= \left(1 + \frac{H}{v}\right) \det \begin{pmatrix} \lambda_{2} \frac{v}{\sqrt{2}} & \lambda_{3} \frac{v}{\sqrt{2}} \\ \lambda_{4} & \lambda_{5} \end{pmatrix}$$

$$= (1 + F_{i}(H/v)) \times P(\lambda_{i}, m_{i}, v).$$

- $F_i(H/v) = H/v$
- $F_i'(0) = 1 + F_i(0)$
- Hence, in LET singlet top partner does not change effect Higgs production rates.
- LET breaks down, but maybe if can get large effect in LET can get large effect in exact result.

 Introduce full generation of Mirror quarks with no SM-mixing. (Sorry for notation change, these are all non-SM quarks)

$$\psi_L^1 = \begin{pmatrix} \mathcal{T}_L^1 \\ \mathcal{B}_L^1 \end{pmatrix}, \ \mathcal{T}_R^1, \mathcal{B}_R^1; \qquad \psi_R^2 = \begin{pmatrix} \mathcal{T}_R^2 \\ \mathcal{B}_R^2 \end{pmatrix}, \ \mathcal{T}_L^2, \mathcal{B}_L^2$$

Mass terms:

$$-\mathcal{L} = \lambda_A \overline{\psi}_L^1 \Phi \mathcal{B}_R^1 + \lambda_B \overline{\psi}_L^1 \tilde{\Phi} \mathcal{I}_R^1 + \lambda_C \overline{\psi}_R^2 \Phi \mathcal{B}_L^2 + \lambda_D \overline{\psi}_R^2 \tilde{\Phi} \mathcal{I}_L^2 + \lambda_E \overline{\psi}_L^1 \psi_R^2 + \lambda_F \overline{\mathcal{T}}_R^1 \mathcal{T}_L^2 + \lambda_G \overline{\mathcal{B}}_R^1 \mathcal{B}_L^2 + \text{h.c.}$$

Mass matrices:

$$\mathcal{M}_{U} = \begin{pmatrix} \lambda_{B} \frac{(H+\nu)}{\sqrt{2}} & \lambda_{E} \\ \lambda_{F} & \lambda_{D} \frac{(H+\nu)}{\sqrt{2}} \end{pmatrix}, \qquad \mathcal{M}_{D} = \begin{pmatrix} \lambda_{A} \frac{(H+\nu)}{\sqrt{2}} & \lambda_{E} \\ \lambda_{G} & \lambda_{C} \frac{(H+\nu)}{\sqrt{2}} \end{pmatrix}$$

• Can no longer factor out H + v from determinant of mass matrices.

Focusing on up-type mass matrix:

$$\det \mathcal{M}_{U} = -\lambda_{E} \lambda_{F} \left(1 - \frac{\lambda_{B} \lambda_{D}}{\lambda_{E} \lambda_{F}} \frac{v^{2}}{2} \left(1 + \frac{H}{v} \right)^{2} \right)$$
$$= \left(1 + F_{i}(H/v) \right) \times P(\lambda_{i}, m_{i}, v)$$

• Check criteria if Higgs physics sensitive to new fermions:

$$F(H/v) = -\frac{\lambda_B \lambda_D}{\lambda_E \lambda_F} \frac{v^2}{2} \left(1 + \frac{H}{v} \right)^2 \Rightarrow F''(0) \neq 0$$

$$F'(H/v) = -\frac{\lambda_B \lambda_D}{\lambda_E \lambda_F} v^2 \left(1 + \frac{H}{v} \right) \frac{H}{v} \Rightarrow F'(0) = 0 \neq 1 + F(0)$$

- F depends on couplings and masses of Mirror Fermion sector.
- Mirror fermion sector can effect Higgs physics.
- Can we effect single and double Higgs rates differently?
 - $c_H = c_1 + c_2 \approx 1$ at SM value
 - $c_{HH} = c_1 c_2$ different from SM value of -1

 Triangle diagram LET amplitude relative to SM value (included SM contribution, and c are mass basis Higgs couplings normalized to v):

$$\frac{A_{gg\to H}}{A_{gg\to H}^{SM}} \quad \equiv \quad 1 + \Delta, \qquad \Delta = \frac{c_{T_1T_1}}{2M_{T_1}} + \frac{c_{T_2T_2}}{2M_{T_2}} + \frac{c_{B_1B_1}}{2M_{B_1}} + \frac{c_{B_2B_2}}{2M_{B_2}}$$

Box diagram relative to SM:

$$\begin{array}{ccc} \frac{A^{*}gg \to HH}{A^{SM,box}_{gg \to HH}} & \equiv & 1 + \Delta_{box} \\ \Delta_{box} & = & \frac{c_{T_{1}T_{1}}^{2}}{4M_{T_{1}}^{2}} + \frac{c_{T_{2}T_{2}}^{2}}{4M_{B_{1}}^{2}} + \frac{c_{B_{1}B_{1}}^{2}}{4M_{B_{2}}^{2}} + \frac{c_{T_{1}T_{2}}^{2}c_{T_{2}T_{1}}}{2M_{T_{1}}M_{T_{2}}} + \frac{c_{B_{1}B_{2}}^{2}c_{B_{2}B_{1}}}{2M_{B_{1}}M_{B_{2}}} \end{array}$$

• Boxes sensitive to off-diagonal couplings of Higgs and new fermions.

 Triangle diagram LET amplitude relative to SM value (included SM contribution, and c are mass basis Higgs couplings normalized to v):

$$\frac{A_{gg \to H}}{A_{gg \to H}^{SM}} \quad \equiv \quad 1 + \Delta, \qquad \Delta = \frac{c_{T_1 T_1}}{2M_{T_1}} + \frac{c_{T_2 T_2}}{2M_{T_2}} + \frac{c_{B_1 B_1}}{2M_{B_1}} + \frac{c_{B_2 B_2}}{2M_{B_2}}$$

Box diagram relative to SM:

$$\begin{array}{lll} \frac{gS \to III}{A_{gS \to HH}^{SM,box}} & \equiv & 1 + \Delta_{box} \\ \Delta_{box} & = & \frac{c_{T_1T_1}^2}{4M_{T_1}^2} + \frac{c_{T_2T_2}^2}{4M_{T_2}^2} + \frac{c_{B_1B_1}^2}{4M_{B_1}^2} + \frac{c_{B_2B_2}^2}{4M_{B_2}^2} + \frac{c_{T_1T_2}c_{T_2T_1}}{2M_{T_1}M_{T_2}} + \frac{c_{B_1B_2}c_{B_2B_1}}{2M_{B_1}M_{B_2}} \end{array}$$

- Boxes sensitive to off-diagonal couplings of Higgs and new fermions.
- LETs of single and double Higgs rates end up independent of absolute mass scale of heavy quarks, but sensitive mass difference.

Parameter Choice

Original Lagrangian has 7 free parameters:

$$\mathcal{M}_{U} = \begin{pmatrix} \lambda_{B} \frac{H+\nu}{\sqrt{2}} & \lambda_{E} \\ \lambda_{F} & \lambda_{D} \frac{H+\nu}{\sqrt{2}} \end{pmatrix}, \qquad \mathcal{M}_{D} = \begin{pmatrix} \lambda_{A} \frac{H+\nu}{\sqrt{2}} & \lambda_{E} \\ \lambda_{G} & \lambda_{C} \frac{H+\nu}{\sqrt{2}} \end{pmatrix}$$

- Going to mass basis have 8 parameters:
 - 4 masses: $M_{T1}, M_{T2}, M_{B1}, M_{B2}$
 - 4 angles: $\theta_{L,R}^t, \theta_{L,R}^b$

Parameter Choice

Original Lagrangian has 7 free parameters:

$$\mathcal{M}_{U} = \begin{pmatrix} \lambda_{B} \frac{H+\nu}{\sqrt{2}} & \lambda_{E} \\ \lambda_{F} & \lambda_{D} \frac{H+\nu}{\sqrt{2}} \end{pmatrix}, \qquad \mathcal{M}_{D} = \begin{pmatrix} \lambda_{A} \frac{H+\nu}{\sqrt{2}} & \lambda_{E} \\ \lambda_{G} & \lambda_{C} \frac{H+\nu}{\sqrt{2}} \end{pmatrix}$$

- Going to mass basis have 8 parameters:
 - 4 masses: $M_{T1}, M_{T2}, M_{B1}, M_{B2}$
 - 4 angles: $\theta_{L,R}^t, \theta_{L,R}^b$
- Since \mathcal{M}_U and \mathcal{M}_D have a common parameter, can remove one angle d.o.f.
- Can replace another angle with deviation from SM in single Higgs amplitude

$$\Delta = \frac{c_{T_1 T_1}}{2M_{T_1}} + \frac{c_{T_2 T_2}}{2M_{T_2}} + \frac{c_{B_1 B_1}}{2M_{B_1}} + \frac{c_{B_2 B_2}}{2M_{B_2}}$$

Can then clearly see relative deviations in single and double Higgs rates.

Parameter Choice

 For simplicity and to avoid large corrections to oblique parameters assume equal masses for doublets of heavy quarks:

$$M_{T1} = M_{B1} = M$$
 $M_{T2} = M_{B2} = M(1 + \delta)$

- After these choices have 5 free parameters:
 - M: Heavy mass (which LETs are independent of)
 - δ: mass difference
 - Δ: Deviation from SM single Higgs amplitude.
 - \bullet $\theta_{-}^{t}, \theta_{+}^{b}$
- ullet To make equations simpler, have defined $m{ heta}_{\pm}^{t,b} = m{ heta}_{L}^{t,b} \pm m{ heta}_{R}^{t,b}$
- Will also introduce Δ_{box} , the deviation in the double Higgs amplitude.

Parameter Scan

- Forced into the limit $\theta_{-}^{t,b} \sim \pi/2$
- \bullet Δ : deviation from SM single Higgs amplitude

Deviation in Two Higgs Amplitude

Magenta: $\delta = 0.75$

Red: $\delta = 0.5$

Black: $\delta = 0.25$

- Δ : deviation from SM single Higgs amplitude.
- δ : mass separation between M_{B_2}, M_{T_2} and M_{B_3}, B_{T_3}
- Double Higgs coupling does not increase from $\delta = 0$.

Oblique Parameter Constraints

- Red shaded region allowed by oblique parameters.
- ullet Δ : deviation from SM single Higgs amplitude.
- δ : mass separation between M_{B_2}, M_{T_2} and M_{B_3}, B_{T_3}
- EW precision eliminates most of region with large deviation.
- M = 800 GeV $\theta_{-}^{t} = \pi/2$

Oblique Parameters Constraints

- Red shaded region allowed by oblique parameters.
- Eliminated region with large deviation.

DiHiggs Rate

- Δ : deviation from SM single Higgs amplitude.
- δ : mass separation between M_{B_2}, M_{T_2} and M_{B_3}, B_{T_3}
- $\theta_{\perp}^{b} = 0$ $\theta_{-}^{t} = \pi/2$ M = 800 GeV

DiHiggs Rate

- $\Delta = -0.1, \delta = 0.4$
- $\theta_{+}^{b} = 0$ $\theta_{-}^{t} = \pi/2$ M = 800 GeV
- Increases the DiHiggs rate by $\sim 15\%$
- \bullet Δ : deviation from SM single Higgs amplitude.
- δ : mass separation between M_{B_2}, M_{T_2} and M_{B_3}, B_{T_3}

Vector Fermions with SM Mixing

- Finally, will analyze the addition of a heavy vector fermion generation that mixes with 3rd generation SM quarks.
- Matter content:
 - Heavy vector-like quark doublets and singlets: $Q = \begin{pmatrix} T \\ B \end{pmatrix}, U, D$
 - 3^{rd} generation quarks: $q_L = \begin{pmatrix} t_L \\ b_L \end{pmatrix}, t_R, b_R$
- Same as Mirror fermion case with SM Higgs mixing added.

Mass terms

- Define basis $\chi_{L,R}^t \equiv (t,T,U)_{L,R}, \chi_{L,R}^b \equiv (b,B,D)$
- The mass and Yukawa interactions are then:

$$-L_{Y'} = \overline{\chi}_L^t M^{(t)}(h) \chi_R^t + \overline{\chi}_L^b M^{(b)}(h) \chi_R^b + h.c.,$$

• Higgs-dependent mass matrices:

$$\begin{split} \mathbf{\mathit{M}}^{(t)}(H) & = & \left(\begin{array}{cccc} \lambda_{t}(\frac{H+\nu}{\sqrt{2}}) & M_{4} & \lambda_{7}(\frac{H+\nu}{\sqrt{2}}) \\ \lambda_{9}(\frac{H+\nu}{\sqrt{2}}) & \mathbf{\mathit{M}} & \lambda_{1}(\frac{H+\nu}{\sqrt{2}}) \\ M_{5} & \lambda_{3}(\frac{H+\nu}{\sqrt{2}}) & \mathbf{\mathit{M}}_{U} \end{array} \right) \\ \mathbf{\mathit{M}}^{(b)}(H) & = & \left(\begin{array}{cccc} \lambda_{b}(\frac{H+\nu}{\sqrt{2}}) & M_{4} & \lambda_{8}(\frac{H+\nu}{\sqrt{2}}) \\ \lambda_{10}(\frac{H+\nu}{\sqrt{2}}) & \mathbf{\mathit{M}}_{4} & \lambda_{2}(\frac{H+\nu}{\sqrt{2}}) \\ M_{6} & \lambda_{11}(\frac{H+\nu}{\sqrt{2}}) & \mathbf{\mathit{M}}_{D} \end{array} \right), \end{split}$$

- Three up-type quarks (T_1, T_2, T_3) and three down-type quarks (B_1, B_2, B_3) .
- Clear Higgs dependence does not factorize from coupling and mass dependence in determinant

Top quark LET

• Integrating out only the three heavy top quarks the Hgg coupling is:

$$L_{hgg}^{(t)} = \frac{\alpha_{s}}{12\pi} \frac{h}{\nu} \bigg[1 + 2 \frac{\lambda_{3} \nu^{2}}{X} \bigg(\frac{\lambda_{1} \lambda_{t} - \lambda_{7} \lambda_{9}}{X} \bigg) \bigg] G^{A,\mu\nu} G_{\mu\nu}^{A} \,, \label{eq:lagger}$$

• The *HHgg* coupling is:

$$L_{hhgg}^{(t)} = -\frac{\alpha_s}{24\pi} \frac{h^2}{v^2} \left\{ 1 - \left[\frac{2\lambda_3 v^2 (\lambda_1 \lambda_t - \lambda_7 \lambda_9)}{X} - \left(\frac{2\lambda_3 v^2 (\lambda_1 \lambda_t - \lambda_7 \lambda_9)}{X} \right)^2 \right] \right\} G^{A,\mu\nu} G_{\mu\nu}^A$$

$$X \equiv -\frac{v}{2\sqrt{2}} \det M^{(t)}(0)$$

- Violet: Heavy-light coupling Red: Heavy-heavy coupling Blue: Light-light coupling
- Deviations from SM only depend on one coupling combination, with opposite signs for single and double Higgs coupling.

Top quark LET

• Integrating out only the three heavy top quarks the *Hgg* coupling is:

$$L_{\textit{hgg}}^{(\textit{t})} = \frac{\alpha_{\textit{s}}}{12\pi} \frac{\textit{h}}{\textit{v}} \bigg[1 + 2 \frac{\lambda_{\textit{3}} \textit{v}^2 \bigg(\frac{\lambda_{\textit{1}} \lambda_{\textit{t}} - \lambda_{\textit{7}} \lambda_{\textit{9}}}{\textit{X}} \bigg) \bigg] \textit{G}^{\textit{A}, \textit{\mu} \textit{v}} \textit{G}_{\textit{\mu} \textit{v}}^{\textit{A}} \,, \label{eq:loggless}$$

• The *HHgg* coupling is:

$$L_{hhgg}^{(t)} = -\frac{\alpha_s}{24\pi} \frac{h^2}{v^2} \left\{ 1 - \left[\frac{2\lambda_3 v^2 (\lambda_1 \lambda_t - \lambda_7 \lambda_9)}{X} - \left(\frac{2\lambda_3 v^2 (\lambda_1 \lambda_t - \lambda_7 \lambda_9)}{X} \right)^2 \right] \right\} G^{A,\mu\nu} G_{\mu\nu}^A$$

$$X \equiv -\frac{v}{2\sqrt{2}} \det M^{(t)}(0)$$

- Violet: Heavy-light coupling Red: Heavy-heavy coupling Blue: Light-light coupling
- Deviations from SM only depend on one coupling combination, with opposite signs for single and double Higgs coupling.
- For $\lambda_3 = 0$ have no deviation:

$$\det M^{(t)}(H)\bigg|_{\lambda_3=0} = -\frac{H+\nu}{2\sqrt{2}}X\bigg|_{\lambda_3=0}.$$

Need to seriously break the LET.

• Integrate out heavy states, have usual LET operators:

• Integrate out heavy states, have usual LET operators:

• Have new operator from SM-heavy mixing:

This new operator can break the LETs Gillioz, Grober, Grojean, Muhlleitner, Salvioni, 1206.7120

• Integrating out heavy states to $O(1/M^2)$:

$$L_{eff} = -m_t \overline{t}t - Y_t \overline{t}th + c_{2h}^{(t)} \overline{t}th^2 - m_b \overline{b}b - Y_b \overline{b}bh + c_{2h}^{(b)} \overline{b}bh^2 + \frac{c_g \alpha_s}{12\pi \nu} G^{A,\mu\nu} G^{\mu\nu}_A h - \frac{c_{gg} \alpha_s}{24\pi \nu^2} G^{A,\mu\nu} G^{\mu\nu}_A h^2$$

• Have shift in Yukawa coupings:

$$\sqrt{2}Y_t = \sqrt{2}\frac{m_t}{v} + \frac{v^2}{MM_U}\lambda_3\lambda_7\lambda_9 - \lambda_t\frac{v^2}{2}\left(\frac{\lambda_7^2}{M_U^2} + \frac{\lambda_9^2}{M^2}\right)$$

$$\equiv \sqrt{2}\frac{m_t}{v}\left(1 + \delta_t\right)$$

$$\sqrt{2}Y_b \equiv \sqrt{2}\frac{m_b}{v}\left(1 + \delta_b\right)$$

- Four point interactions: $c_{2h}^{(t)} = -\frac{3}{2} \frac{m_t \delta_t}{v^2}$ $c_{2h}^{(b)} = -\frac{3}{2} \frac{m_b \delta_b}{v^2}$
- Effective Higgs-gluon couplings:

$$c_g = -c_{gg} = v^2 \left[-\frac{\lambda_1 \lambda_3}{M M_U} - \frac{\lambda_2 \lambda_{11}}{M M_D} + \frac{1}{2} \left(\frac{\lambda_7^2}{M_U^2} + \frac{\lambda_8^2}{M_D^2} + \frac{\lambda_9^2 + \lambda_{10}^2}{M^2} \right) \right]$$

• Integrating out heavy states to $O(1/M^2)$:

$$L_{eff} = -m_t \overline{t}t - Y_t \overline{t}th + c_{2h}^{(t)} \overline{t}th^2 - m_b \overline{b}b - Y_b \overline{b}bh + c_{2h}^{(b)} \overline{b}bh^2 + \frac{c_g \alpha_s}{12\pi \nu} G^{A,\mu\nu} G^{\mu\nu}_A h - \frac{c_{gg} \alpha_s}{24\pi \nu^2} G^{A,\mu\nu} G^{\mu\nu}_A h^2$$

• Have shift in Yukawa coupings:

$$\sqrt{2}Y_t = \sqrt{2}\frac{m_t}{v} + \frac{v^2}{MM_U}\lambda_3\lambda_7\lambda_9 - \lambda_t\frac{v^2}{2}\left(\frac{\lambda_7^2}{M_U^2} + \frac{\lambda_9^2}{M^2}\right)$$

$$\equiv \sqrt{2}\frac{m_t}{v}\left(1 + \delta_t\right)$$

$$\sqrt{2}Y_b \equiv \sqrt{2}\frac{m_b}{v}\left(1 + \delta_b\right)$$

- Four point interactions: $c_{2h}^{(t)} = -\frac{3}{2} \frac{m_t \delta_t}{v^2}$ $c_{2h}^{(b)} = -\frac{3}{2} \frac{m_b \delta_b}{v^2}$
- Effective Higgs-gluon couplings:

$$c_{g} = -c_{gg} = v^{2} \left[-\frac{\lambda_{1}\lambda_{3}}{MM_{U}} - \frac{\lambda_{2}\lambda_{11}}{MM_{D}} + \frac{1}{2} \left(\frac{\lambda_{7}^{2}}{M_{U}^{2}} + \frac{\lambda_{8}^{2}}{M_{D}^{2}} + \frac{\lambda_{9}^{2} + \lambda_{10}^{2}}{M^{2}} \right) \right]$$

Only three independent parameters: δ_t , δ_b , c_g

Mass Hierarchies

- Although LETs and top and bottom EFT have few parameters, full theory still consists of 16 free parameters.
- Want to compare how well the different effective Lagrangians reproduce the full theory.
- Will consider different hierarchies of the parameters to simplify parameter space.
- Already have natural hierarchy $m_t \ll M_{T_2}, M_{T_3}$ and $m_b \ll M_{B_2}, M_{B_3}$.

 \bullet $\lambda_i v \ll M_4, M_5 \ll M, M_U, M_D$

$$M^{(t)}(H) = \begin{pmatrix} \lambda_{t}(\frac{H+\nu}{\sqrt{2}}) & M_{4} & \lambda_{7}(\frac{H+\nu}{\sqrt{2}}) \\ \lambda_{9}(\frac{H+\nu}{\sqrt{2}}) & M & \lambda_{1}(\frac{H+\nu}{\sqrt{2}}) \\ M_{5} & \lambda_{3}(\frac{H+\nu}{\sqrt{2}}) & M_{U} \end{pmatrix}$$

$$M^{(b)}(H) = \begin{pmatrix} \lambda_{b}(\frac{H+\nu}{\sqrt{2}}) & M_{4} & \lambda_{8}(\frac{H+\nu}{\sqrt{2}}) \\ \lambda_{10}(\frac{H+\nu}{\sqrt{2}}) & M & \lambda_{2}(\frac{H+\nu}{\sqrt{2}}) \\ M_{6} & \lambda_{11}(\frac{H+\nu}{\sqrt{2}}) & M_{D} \end{pmatrix},$$

Use mixing angles that scale as

$$\theta \sim \frac{\lambda_i \nu}{M_4} \sim \frac{\lambda_i \nu}{M_5} \sim \frac{M_4}{M} \sim \frac{M_5}{M} \qquad \theta^2 \sim \frac{\lambda_i \nu}{M} \sim \frac{\lambda_i \nu}{M_U} \sim \frac{\lambda_i \nu}{M_D}$$

• Count $\lambda_i \sim \mathcal{O}(1)$.

• Left and right mixing matrices for transformation $t, T, U \rightarrow T_1, T_2, T_3$.

- t is SM 3^{rd} generation, T is part of vector-fermion doublet, U is vector-fermion singlet.
- \bullet θ^D parameterizes mixing between 3^{rd} generation and vector-fermion doublet.
- \bullet θ^S parameterizes mixing between 3^{rd} generation and vector-fermion singlet.
- θ^H is mixing between vector-fermion doublet and singlet.

• Left and right mixing matrices for transformation $t, T, U \rightarrow T_1, T_2, T_3$.

- t is SM 3^{rd} generation, T is part of vector-fermion doublet, U is vector-fermion singlet.
- θ^D parameterizes mixing between 3^{rd} generation and vector-fermion doublet.
- θ^S parameterizes mixing between 3^{rd} generation and vector-fermion singlet.
- θ^H is mixing between vector-fermion doublet and singlet.
- Solve for EFT parameters to $O(\theta^2)$:

$$Y_t = \frac{m_t}{v} \quad Y_b = \frac{m_b}{v}$$
 $c_{2h}^{(t)} = c_{2h}^{(b)} = c_g = -c_{gg} = 0$

- New operators go to zero, and Yukawas revert to the SM.
- From this approach can see result without doing full calculation.

• $M_4, M_5 \ll \lambda_i v \ll M, M_U, M_D$ (before assumed $\lambda_i v \ll M_4, M_5 \ll M, M_U, M_D$.)

$$M^{(t)}(H) = \begin{pmatrix} \lambda_{t}(\frac{H+\nu}{\sqrt{2}}) & M_{4} & \lambda_{7}(\frac{H+\nu}{\sqrt{2}}) \\ \lambda_{9}(\frac{H+\nu}{\sqrt{2}}) & M & \lambda_{1}(\frac{H+\nu}{\sqrt{2}}) \\ M_{5} & \lambda_{3}(\frac{H+\nu}{\sqrt{2}}) & M_{U} \end{pmatrix}$$

$$M^{(b)}(H) = \begin{pmatrix} \lambda_{b}(\frac{H+\nu}{\sqrt{2}}) & M_{4} & \lambda_{8}(\frac{H+\nu}{\sqrt{2}}) \\ \lambda_{10}(\frac{H+\nu}{\sqrt{2}}) & M & \lambda_{2}(\frac{H+\nu}{\sqrt{2}}) \\ M_{6} & \lambda_{11}(\frac{H+\nu}{\sqrt{2}}) & M_{D} \end{pmatrix},$$

Use mixing angles that scale as

$$\theta \sim \frac{M_{4,5}}{\lambda_i \nu} \sim \frac{\lambda_i \nu}{M}$$
 and $\theta^2 \sim \frac{M_{4,5}}{M}$

• Left and right mixing matrices for transformation $t, T, U \rightarrow T_1, T_2, T_3$.

$$\begin{array}{lll} V_L^t & = & \begin{pmatrix} 1 - \frac{1}{2} \theta_L^{S^2} & -\theta_L^{D^2} & -\theta_L^S \\ \theta_L^{D^2} + \theta_L^H \theta_L^S & 1 - \frac{1}{2} \theta_L^{H^2} & \theta_L^H \\ \theta_L^S & -\theta_L^H & 1 - \frac{1}{2} \left(\theta_L^{S^2} + \theta_L^{H^2} \right) \end{pmatrix} \\ V_R^t & = & \begin{pmatrix} 1 - \frac{1}{2} \theta_R^{D^2} & -\theta_R^D & -\theta_R^S^2 \\ \theta_R^D & 1 - \frac{1}{2} \left(\theta_R^{D^2} + \theta_R^{H^2} \right) & -\theta_R^H \\ \theta_R^D \theta_R^H + \theta_R^{S^2} & \theta_R^H & 1 - \frac{1}{2} \theta_R^{H^2} \end{pmatrix} \, .$$

- t is SM 3^{rd} generation, T is part of vector-fermion doublet, U is vector-fermion singlet.
- \bullet θ^D parameterizes mixing between 3^{rd} generation and vector-fermion doublet.
- θ^S parameterizes mixing between 3^{rd} generation and vector-fermion singlet.
- θ^H is mixing between vector-fermion doublet and singlet.
- Structure of mixing matrices now different.

• Solve for EFT parameters to $O(\theta^2)$:

$$Y_{t} = \frac{m_{t}}{v} \left(1 - \theta_{R}^{Dt^{2}} - \theta_{L}^{St^{2}} \right) \qquad c_{2h}^{(t)} = \frac{3m_{t}}{2v^{2}} \left(\theta_{R}^{Dt^{2}} + \theta_{L}^{St^{2}} \right)$$

$$Y_{b} = \frac{m_{b}}{v} \left(1 - \theta_{R}^{Db^{2}} - \theta_{L}^{Sb^{2}} \right) \qquad c_{2h}^{(b)} = \frac{3m_{b}}{2v^{2}} \left(\theta_{R}^{Db^{2}} + \theta_{L}^{Sb^{2}} \right)$$

$$c_{g} = -c_{gg} = \left(2\theta_{L}^{Ht^{2}} + \theta_{L}^{St^{2}} \right) + \left(2\theta_{R}^{Ht^{2}} + \theta_{R}^{Dt^{2}} \right) + 2\frac{M_{T_{2}}^{2} + M_{T_{3}}^{2}}{M_{T_{2}}M_{T_{3}}} \theta_{L}^{Ht} \theta_{R}^{Ht}$$

$$+ \left(2\theta_{L}^{Hb^{2}} + \theta_{L}^{Sb^{2}} \right) + \left(2\theta_{R}^{Hb^{2}} + \theta_{R}^{Db^{2}} \right) + 2\frac{M_{B_{2}}^{2} + M_{B_{3}}^{2}}{M_{B_{2}}M_{B_{3}}} \theta_{L}^{Hb} \theta_{R}^{Hb}$$

- Possible to get deviations from SM rates.
 - $c_{2h}^{(t)}$ is the coefficient for $\bar{t}th^2$
 - c_g and c_{gg} are coefficients of $hG^{a\mu\nu}G^a_{\mu\nu}$ and $h^2G^{a\mu\nu}G^a_{\mu\nu}$
- Shift in Yukawa terms depend on same parameters at $\bar{t}th^2$ and $\bar{b}bh^2$ coefficients.
- If $M_{B_2} = M_{B_3}$ and $M_{T_2} = M_{T_3}$ find $c_g > 0 > c_{gg}$.
 - Box diagram dominates, so decreases double Higgs rate.
- Need θ_I^H and θ_R^H opposite signs for $c_{gg} > 0$.

Electroweak Precision

- Mixing between vector-fermions and SM introduces deviations in EW gauge boson couplings.
- To prevent flavor changing neutral currents, eliminate mixing between states with different EW quantum number:
 - No mixing between vector-fermion doublet and right-handed SM quarks:

$$\theta_R^{Dt} = \theta_R^{Db} = 0$$

• No mixing between vector-fermion singlet and left-handed SM quarks:

$$\theta_L^{St} \simeq \theta_L^{Sb} = 0.$$

- Also allow small θ_L^{St} so that $c_{2h}^{(t)} \neq 0$.
- Assumptions allow for $Z \to b\bar{b}$ to be the SM value, and there are no flavor-changing neutral currents between the light and heavy quarks.

Electroweak Precision

- Mixing between vector-fermions and SM introduces deviations in EW gauge boson couplings.
- To prevent flavor changing neutral currents, eliminate mixing between states with different EW quantum number:
 - No mixing between vector-fermion doublet and right-handed SM quarks:

$$\theta_R^{Dt} = \theta_R^{Db} = 0$$

• No mixing between vector-fermion singlet and left-handed SM quarks:

$$\theta_L^{St} \simeq \theta_L^{Sb} = 0.$$

- Also allow small θ_L^{St} so that $c_{2h}^{(t)} \neq 0$.
- Assumptions allow for $Z \to b\bar{b}$ to be the SM value, and there are no flavor-changing neutral currents between the light and heavy quarks.
- With assumption $\theta_L^{Dt} = \theta_L^{Db}$, isospin violation in the heavy-light mixing is eliminated.
- Oblique parameters only constrain θ^H , and constraints are the same as in Mirror fermion case.

DiHiggs Total Cross Section

- As shown before, LET diverges at $\sqrt{S} = 100 \text{ TeV}$.
- EFT closely approximates exact cross section at 13 and 100 TeV.

DiHiggs Invariant Mass Distributions 13 TeV

- LET does not reproduce distrubution.
- EFT closely follows exact distribution.

DiHiggs Invariant Mass Distribution 100 TeV

- LET does not reproduce distrubution.
- EFT closely follows exact distribution even at 100 TeV.

Conclusions

- Current rates for single Higgs production definitively rule out the simple addition of a new chiral generation.
- New colored particles need additional mass sources beyond the SM Higgs.
- By measuring both single and double Higgs production, can possibly shed light on mass the mass generating mechanism of new colored particles.
- Studied the effects of new heavy vector-like quarks on single and double Higgs rates.
- Singlet top quark:
 - \bullet After taking into consideration EW precision measurement, singlet top quark decreased the double Higgs production bye $\sim15\%$
 - The low energy theorem was unchanged from the SM.
- Mirror Fermions:
 - Found that can at most increase DiHiggs rate by 17% while suppressing the low energy theorem triangle amplitude by 10%

Conclusions

- Mixing between SM and new vector-quark generation:
 - LET badly diverges from exact cross section at 100 TeV.
 - In addition to low energy theorem, integrating out just the heavy partners introduces a new EFT containing top and bottom quarks.
 - Although many coupling, in addition to the top and bottom quark masses, EFT only depends on 3 independent parameters.
 - The new EFT closely reproduces both invariant mass distributions and cross section of full theory.
- May be other possible avenues to increase double Higgs rate:
 - Can have new resonances that could increase double Higgs rate by $\sim 60-70$ times Baglio, Eberhardt, Nierste, Wiebusch, 1403.1264
 - Also possible to have color octet-scalars reproduce SM single Higgs rate within 25% and have factor of two increase in double Higgs Kribs, Martin, PRD86 095023 (2012)